Paradigms of Software Testing

Cem Kaner -- kaner@kaner.com
James Bach -- james@satisfice.com

November, 1999

Thesis

- Software testing is theory testing.
- Software testing is cognition.
- Software testing is NOT computer science.
- Experts in the field are in substantial disagreement over what software testing is.
- You'll do better testing if you know about how different communities think about testing.

The Puzzle

- Black box testing groups vary widely in their approach to testing.
- Tests that seem essential to one group seem uninteresting or irrelevant to another.
- Big differences can appear even when both groups are composed of intelligent, experienced, dedicated people.
- Why?

Paradigms

- A <u>paradigm</u> provides a structure of thinking about an area.
 - Typically, the description of a paradigm includes one or a few paradigmatic cases -- key example. Much of the reasoning within the paradigm is based on analogies to these key cases.
 - The paradigm creates a mainstream of thinking--it provides insights and a direction for further research or work. But it implicitly also defines limits on what is relevant, interesting, or possible. Things outside of the paradigm are uninteresting. People who solve the types of puzzles that are characteristic of the paradigm are respected, whereas people who solve other types of puzzles instead are outsiders, and not well respected.
 - A testing paradigm would define the <u>types</u> of tests that are (to the person operating under this paradigm) relevant and interesting.

Paradigms (Kuhn)

- See Thomas Kuhn, The Structure of Scientific Revolutions.
- A paradigm is a model based on a shared experiment that includes law, theory, application and instrumentation together and from which springs particular coherent traditions of scientific research.
- A paradigm includes a concrete scientific achievement as a locus of professional commitment, prior to the various concepts, laws, theories and points abstracted from it.
- The pre-paradigm period . . . is regularly marked by frequent and deep debate over legitimate methods, problems, and standards of solution, though these serve rather to define schools than to produce agreement.

Paradigms Define Communities

- A paradigm is about who belongs to a community, and the "constellation of commitments" within the community.
- Sometimes adherents of a paradigm are so entrenched in it that
 they can't see its limitations at all. Their world is the paradigm.
 Any ideas outside the paradigm are seen as crazy, stupid,
 misguided, or else are assimilated into the paradigm.

Examples:

- Cognitive vs. Objective paradigms of engineering.
- Heuristic vs. Analytic paradigms of testing.
- Black Box vs. White Box testing.
- Contract-Driven vs. Market-Seeking development.
- Adversarial vs. Supportive tester/developer relations.

Black Box Testing Paradigms

- This list reflects our (Kaner's / Bach's) observations in the field and is not exhaustive.
- We put one on the list if we've seen credible testers drive their thinking about black box testing in the way we describe. A paradigm for one person might merely be a technique for another.
 - We recommend that you try to master the "right" combination of a few approaches. They are not mutually exclusive. The right combination will depend on your situation.

A List of Paradigms

- Domain driven
- Stress driven
- Specification driven
- Risk driven
- Random / statistical
- Function
- Regression
- Scenario / use case / transaction flow
- User testing
- Exploratory

Domain Testing

Tag lines

- "Try ranges and options."
- "Subdivide the world into classes."
- Fundamental question or goal
 - A stratified sampling strategy. Divide large space of possible tests into subsets. Pick best representatives from each set.
- Paradigmatic case(s)
 - Equivalence analysis of a simple numeric field
 - Printer compatibility testing

Domain Testing

Strengths

- Find highest probability errors with a relatively small set of tests.
- Intuitively clear approach, generalizes well

Blind spots

- Errors that are not at boundaries or in obvious special cases.
- Also, the actual domains are often unknowable.

Stress Testing

Tag line

- "Overwhelm the product."
- "Drive it through failure."

Fundamental question or goal

Learn about the capabilities and weaknesses of the product by driving it through failure and beyond. What does failure at extremes tell us about changes needed in the program's handling of normal cases?

Paradigmatic case(s)

- High volumes of data, device connections, long transaction chains
- Low memory conditions, device failures, viruses, other crises.

Strengths

 Expose weaknesses that will arise in the field. Lots of security holes found this way

Blind spots

Weaknesses that are not made more visible by stress.

11

Specification-Driven Testing

Tag line:

– "Verify every claim."

Fundamental question or goal

 Check the product's conformance with every statement in every spec, requirements document, etc.

Paradigmatic case(s)

Traceability matrix, tracks test cases associated with each specification item.

Strengths

 Critical defense against warranty claims, fraud charges, loss of credibility with customers.

Blind spots

Any issues not in the specs or treated badly in the specs.

Risk-Based Testing

- Tag line
 - "Find big bugs first."
- Fundamental question or goal
 - Prioritize the testing effort in terms of the relative risk of different areas or issues we could test for.
- Paradigmatic case(s)
 - Equivalence class analysis, reformulated.
 - Test in order of frequency of use.
 - Stress tests, error handling tests, security tests, tests looking for predicted or feared errors.
 - Sample from predicted-bugs list.

13

Risk-Based Testing

Strengths

- Optimal prioritization (assuming we correctly identify and prioritize the risks)
- High power tests
- Blind spots
 - Risks that were not identified or that are surprisingly more likely.

Random / Statistical Testing

Tag line

- "High-volume testing with new cases all the time."
- Fundamental question or goal
 - Have the computer create, execute, and evaluate huge numbers of tests.
- Paradigmatic case(s)
 - Oracle-driven, validate a function or subsystem (such as function equivalence testing)
 - Stochastic (state transition) testing looking for specific failures (assertions, leaks, etc.)
 - Statistical reliability estimation
 - Partial or heuristic oracle, to find some types of errors without overall validation.

Random / Statistical Testing

Strengths

- Regression doesn't depend on same old test every time.
- Partial oracles can find errors in young code quickly and cheaply.
- Less likely to miss internal optimizations that are invisible from outside.
- Can detect failures arising out of long, complex chains that would be hard to create as planned tests.

Blind spots

- Need to be able to distinguish pass from failure. Too many people think "Not crash = not fail."
- Also, these methods will often cover many types of risks, but will obscure the need for other tests that are not amenable to automation.

Function Testing

- Tag line
 - "Black box unit testing."
- Fundamental question or goal
 - Test each function thoroughly, one at a time.
- Paradigmatic case(s)
 - Spreadsheet, test each item in isolation.
 - Database, test each report in isolation
- Strengths
 - Thorough analysis of each item tested
- Blind spots
 - Misses interactions, misses exploration of the benefits offered by the program.

17

Regression Testing

Tag line

- "Repeat testing after changes."
- Fundamental question or goal
 - Manage the risks that (a) a bug fix didn't fix the bug or (b) the fix (or other change) had a side effect.
- Paradigmatic case(s)
 - Bug regression, old fix regression, general functional regression
 - Automated GUI regression suites
- Strengths
 - Reassuring, confidence building, regulator-friendly
- Blind spots
 - Anything not covered in the regression series. Also, maintenance of this standard list can be extremely costly.

Scenario Testing

- Tag lines
 - "Do something useful and interesting"
 - "Do one thing after another."
- Fundamental question or goal
 - Challenging cases that reflect real use.
- Paradigmatic case(s)
 - Appraise product against business rules, customer data, competitors' output
 - Life history testing (Hans Buwalda's "soap opera testing.")
 - Use cases are a simpler form, often derived from product capabilities and user model rather than from naturalistic observation of systems of this kind.

Scenario Testing

- The ideal scenario has several characteristics:
 - It is realistic (e.g. it comes from actual customer or competitor situations).
 - There is no ambiguity about whether a test passed or failed.
 - The test is complex, that is, it uses several features and functions.
 - There is a stakeholder who will make a fuss if the program doesn't pass this scenario.

Strengths

- Complex, realistic events. Can handle (help with) situations that are too complex to model.
- Exposes failures that occur (develop) over time

Blind spots

- Single function failures can make this test inefficient.
- Must think carefully to achieve good coverage.

User Testing

- Tag line
 - Strive for realism
 - Let's try this with real humans (for a change).
- Fundamental question or goal
 - Identify failures that will arise in the hands of a person, i.e. breakdowns in the overall human/machine/software system.
- Paradigmatic case(s)
 - Beta testing
 - In-house experiments using a stratified sample of target market

User Testing

Strengths

- Design issues are more credibly exposed.
- Can demonstrate that some aspects of product are incomprehensible or lead to high error rates in use.
- In-house tests can be monitored with flight recorders (capture/replay, video), debuggers, other tools.
- In-house tests can focus on areas / tasks that you think are (or should be) controversial.

Blind spots

- Coverage is not assured (serious misses from beta test, other user tests)
- Test cases can be poorly designed, trivial, unlikely to detect subtle errors.
- Beta testing is not free.

Exploratory Testing

Tag line

- "Interactive, concurrent exploration, test design and testing."

Fundamental question or goal

 Software comes to tester undocumented. Tester must simultaneously learn about the product and about the test cases / strategies that will reveal the product and its defects.

Paradigmatic case(s)

- Over-the-wall test-it-today testing.
- Third party components.
- Guerrilla testing (lightly but harshly test an area for a finite time)

Strengths

- Thoughtful strategy for obtaining results in the dark.
- Strategy for discovering failure to meet customer expectations.

Blind spots

The less we know, the more we risk missing.

Paradigm Unification

- Unifying these paradigms means trading them in for a more inclusive paradigm. We believe this paradigm already exists in Epistemology and Cognitive Psychology: the appropriate organizing principles of people testing software are the same as those for people testing theories.
- Software testing is not the child of Computer Science...
 it's more like a half-sister-- an elder half-sister.
- From an epistemic perspective, all the paradigms listed above are interesting heuristic techniques. Epistemically, testing is not "cover this" or "model that". Rather, testing is critical thinking. Testing is doing science.

About Cem Kaner

The senior author of *Testing Computer Software*, Cem Kaner has worked with computers since 1976, doing and managing programming, user interface design, testing, and user documentation. Through his consulting firm, KANER.COM, he teaches courses on black box software testing and consults to software publishers on software testing, documentation, and development management. Kaner is also the founder and co-host of the Los Altos Workshop on Software Testing. He is writing a new book, *Good Enough Testing*, with James Bach and Brian Marick.

An attorney whose practice is focused on the law of software quality, Kaner usually represents customers, individual developers or small consulting firms. He is active in legislative drafting efforts involving software licensing, software quality regulation, and electronic commerce. He has published *Bad Software: What To Do When Software Fails* (with David Pels. John Wiley & Sons, 1998). Kaner was recently elected to the American Law Institute, a prestigious organization of legal scholars.

Kaner holds a B.A. in Arts & Sciences (Math, Philosophy), a Ph.D. in Experimental Psychology (Human Perception & Performance: Psychophysics), and a J.D. (law degree). He is Certified in Quality Engineering by the American Society for Quality.

www.kaner.com kaner@kaner.com www.badsoftware.com

About James Bach

James Bach is the founder and principal consultant of Satisfice, Inc. He writes, speaks, and consults on software quality assurance and testing. In his sixteen years in Silicon Valley-style software companies, including nine years at Apple Computer, Borland International, and Aurigin Systems, he's been a programmer, tester, QA manager, and roving problem-solver. For three years, James was Chief Scientist at ST Labs, an independent software testing company in Seattle that performs substantial testing and tester training for Microsoft.

James is a frequent speaker and writer on the subject of software quality assurance and development processes. James writes and edits the "Software Realities" column in IEEE Computer magazine, is a former section chair of the American Society for Quality and the Silicon Valley Software Quality Association, and was part of the ASQ committee that created the Certified Software Quality Engineer program.

www.satisfice.com

james@satisfice.com

Acknowledgements

- Some of this material was developed by James with the support of ST Labs.
- We thank Bob Stahl, Brian Marick, Doug Hoffman, Hans Schaefer, and Hans Buwalda for several insights.